

Aakash Varma Nadimpalli

Portfolio: akashvarma.com

 LinkedIn
 @varmology

EDUCATION

- **Birla Institute of Technology and Science, Pilani (WILP)** India
Master of Technology - Data Science and Engineering; GPA: 9.32 2022 - 2024
- **Vellore Institute of Technology** India
Bachelor of Technology - Electrical and Electronics Engineering 2015 - 2019

SKILLS SUMMARY

- **Languages:** Python, C, C++
- **Frameworks:** PyTorch, ONNX, TensorFlow, Caffe, MLIR, TVM
- **Techniques:** Quantization (AWQ, GPTQ, GGUF/GGML, SmoothQuant), LoRA, QAT, PTQ, GEMM
- **Models:** LLMs (DeepSeek, Qwen, Llama, CLIP, etc), Diffusion Models (SDXL, CogVideoX), Segmentation, Detection and Classification Models (ResNets, YOLOs, RCNNs, etc)
- **Mathematics:** Linear Algebra, Calculus, Approximation Algorithms, Applied Numerical Methods, Cost Function Modeling

EXPERIENCE

- **Dheyo AI** Remote
Staff Software Engineer Aug 2024 - Present
- **Oxmiq Labs** Hyderabad, India
Staff Software Engineer May 2024 - Jul 2024
 - **Compiler & Runtime Development:**
 - * Architected a PyTorch compiler that leverages `torch.compile` to lower operations to TOSA instruction set via `torch-mlir`
 - * Engineered an asynchronous queuing system for `torch dispatch` that enables efficient execution on Tensorrt Hardware
 - * Developed an optimized garbage collection system for on-device tensor deallocation in `torch`'s eager execution mode during runtime
 - * Implemented a comprehensive self-validating framework with 3-point validation between TOSA and `torch` operations
 - **Performance Optimization:**
 - * Designed algorithms for efficient matrix multiplication tiling optimized for custom hardware acceleration
 - * Researched CUDA/CuBLAS tiling strategies to enhance tensor operation performance
 - * Analyzed batching effects in MLP and Attention layers of transformer architectures to optimize inference
 - **Model Development:**
 - * Evaluated Deepseek_r1_Distil_Qwen_1.5_b and CogVideoX models, creating optimized inference pipelines
 - * Implemented Llama 3.2 1B from scratch with custom optimizations for deployment

- **Kinara, Inc.** Hyderabad, Telangana, India
Various Roles 2020 - 2024
Staff Engineer 2023 - Apr 2024
 - **LLM Deployment and Optimization:**
 - * Deployed Large Language Models on Kinara's Edge AI Processor through novel quantization techniques and compiler optimization
 - * Examined outliers in LLM architectures like llama7b, qwen7b, and tinyllama for ARA-2 deployment
 - * Analyzed quantization methods (AWQ, GPTQ, GGUF/GGML) for optimizing LLMs
 - * Developed a framework for LLM Smoothing using a modified version of QmniQuant that incorporates smoothing into the down projection layer of attention blocks
 - * Implemented FlashAttention tiling and SoftMax online normalization calculator for memory-efficient precise attention mechanism on ARA-2 NNP
 - * Analyzed & pruned LLM layers using SVD and Block Importance, enhancing throughput from 2 to 9 Tokens/sec (4.5x improvement) with minimal accuracy loss on lm-eval
 - * Employed LoRA, QLoRA, & LoRA+ techniques to restore pruned models to SOTA accuracy on lm-eval
 - * Developed a Knowledge Distillation framework using FSDP across multiple GPUs (A10, H100, A100)
 - **CLIP Model Enhancement:**
 - * Optimized OpenAI's CLIP model by enhancing its Transformer blocks, focusing on KQV projection layers through quantization observer analysis
 - * Investigated the impact of quantization errors in mean, variance, and inverse square root in Layer normalization within Transformer blocks
 - * Analyzed systematic outliers in hidden layer features, developing new quantization computation to mitigate errors

Senior Software Engineer

2021 - 2023

Quantization Research:

- * Conducted comparative analysis of rounding techniques (Ada-Round, RNE, RAI) for ResNet50: Original PyTorch model achieved 76.84% accuracy, RAI platform yielded 74.00%, RNE platform attained 76.16%, and Ada-round Simulator matched PyTorch's accuracy at 76.84%
- * Invented a novel Inverse Square Root Approximation for neural network normalization layers with 90% reduction in MSE and 83% reduction in MAE compared to existing techniques
- * Analyzed impact of observer types on rounding techniques during Quantization Aware Training (QAT)

Hardware Optimization:

- * Implemented distributed online normalizer method for efficient bilinear interpolation on ARA-1 NNPs
- * Developed efficient tiling method for optimized tensor permutations on ARA-2 hardware
- * Enhanced YOLOv5 performance through activation distribution analysis and systematic offsetting, improving quantized model precision from 47.8% to 51.6%

Framework Development:

- * Refactored the compiler framework to support multiple target hardware platforms
- * Contributed to the development of the ARA-2 simulator
- * Evaluated Qualcomm's AIMET and Intel's NNCF frameworks for in-house quantization framework development
- * Built conversion framework for PyTorch QAT models (JIT) to ONNX QDQ format (Graph model)

Software Engineer

Jun 2020 - 2021

Kernel Development:

- * Developed optimized kernels for powers-of-two approximation exponentiation in SoftMax functions
- * Created approximation functions for neural network operations (Swish, Mish, GeLU) using piecewise techniques
- * Engineered exp operation approximation for ASIC using Applied Numerical Methods
- * Designed efficient kernels for neural network operations including convolutions, deconvolutions, innerproducts and layernorms for various network architectures

System Development:

- * Developed an AI compiler based on the Caffe framework
- * Created an ensemble machine learning algorithm to predict ARA-1 chip power consumption
- * Formulated mathematical cost functions to predict kernel cycle costs aligned with ASIC performance metrics
- * Designed precision-preserving mathematical kernels for complex operations like ROIAlign and bilinear interpolation on ASIC

Wipro

Bengaluru, Karnataka,
India

ML and Big Data Developer

Jul 2019 - Jun 2020

Data Processing:

- * Implemented big data processing pipelines for large-scale machine learning applications

RESEARCH

- **MTech Thesis:** Fine-Tuning and Quantization Techniques for Enhanced Efficiency in LLMs for Task-Specific Code Generation
- **BTech Research:** Convolutional Neural Networks based Dementia and Tumor Classification from MRI Brain Images (Published in IEEE Xplorer)
- **The RoPE Compatibility Problem in Multi Head Latent Attention:** A Detailed Mathematical Overview
- **Effects of Batching in Transformer Blocks:** Analyzed MLP and Attention blocks on the effects of batching
- **Inverse SQRT Approximation using Range reduction and Piece wise Approximation:** Developed efficient approximation technique achieving 90% reduction in MSE and 83% reduction in MAE

HONORS AND AWARDS

- Winners of Startup Street 4.0 — VIT Vellore (Jan 2018)
- Wolfram Award at DevSpace — Wolfram Alpha (Jan 2018)
- Best ML Implementation at Hackoverflow — CSED (2018)

LEADERSHIP EXPERIENCE

CSED/SHEILD at VIT

VIT University
2016 - 2019

- *Founding Member & Vice President of Tech and Design*

Venturesity VIT

VIT University
2017 - 2019

- *Vice President of Design*